Notasi Faktorial dan Prinsip Dasar

1 Februari 2010 pukul 01:39 | Ditulis dalam Kombinasi, Peluang Kejadian, Permutasi | Tinggalkan komentar

Notasi Faktorial n ! = n(n – 1) (n -2) ………………3.2. 1.

Definisi 0! = 1

PRINSIP DASAR (ATURAN PERKALIAN)

Jika suatu kejadian dapat terjadi dalam n1 cara yang berlainan dan kejadian yang lain dapat terjadi dalam n2 cara yang berlainan maka kejadian-kejadian tersebut bersama-lama dapat terjadi n1.n2 cara yang berlainan.

Contoh:

Berapakah banyak bilangan-bilangan bulat positif yang ganjil terdiri atas 3 angka yang dapat disusun dari angka-angka 3, 4, 5, 6 dan 7.

Jawab:

Sediakan 3 kotak, masing-masing untuk ratusan, puluhan dan satuan.

5
ratusan
5
puluhan
3
satuan

  • Tiap angka dapat diambil sebagai ratusan. Cara itu menghasilkan 5 kemungkinan.

  • Karena tidak diharuskan ketiga angka berlainan, maka tiap angka dapat diambil sebagai puluhan. Ada 5 kemungkinan lagi. Satuan hanya dapat dipilih dari 3, 5, 7 sebab harus bilangan ganjil . Ada 3 kemungkinan.

  • Maka banyak bilangan ada 5 . 5 . 3 = 75 bilangan.

Tinggalkan sebuah Komentar »

RSS feed for comments on this post. TrackBack URI

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s

Blog di WordPress.com.
Entries dan komentar feeds.

%d blogger menyukai ini: