Persamaan Eksponen

1 Februari 2010 pukul 00:51 | Ditulis dalam Eksponen, matematika, matematika kelas 2, sma kelas 2 | Tinggalkan komentar

Adalah persamaan yang didalamnya terdapat pangkat yang berbentuk fungsi dalam x (x sebagai peubah).

[Ket. : Usahakan setiap bilangan pokok ditulis sebagai bilangan berpangkat dengan bilangan dasar 2, 3, 5, 7, dst].

BENTUK-BENTUK

A. af(x) = ag(x) ® f(x) = g(x)

® Samakan bilangan pokoknya sehingga pangkatnya dapat disamakan.

contoh :

2 SUKU ® SUKU DI RUAS KANAN, 1 SUKU DI RUAS KIRI

  1. Ö(82x-3) = (32x+1)1/4
    (23)(2x-3)1/2 = (25)(x+1)1/4
    2(6x-9)/2 = 2(5x-5)/4
    (6x-9)/2 = (5x-5)/4
    24x-36 = 10x+10
    14x = 46
    x = 46/14 = 23/7

  2. 3x²-3x+2 + 3x²-3x = 10
    3².3x²-3x+3x²-3x = 10
    9. 3x²-3x + 3x²-3x = 10
    10. 3x²-3x = 10
    3x² – 3x = 30
    x² – 3x = 0
    x(x-3) = 0
    x1 = 0 ; x2 = 3

3 SUKU ® GUNAKAN PEMISALAN

  1. 22x + 2 – 2 x+2 + 1 = 0
    22.22x – 22.2x + 1 = 0
    Misalkan : 2x = p
    22x = (2x)² = p²
    4p² -4p + 1 = 0
    (2p-1)² = 0
    2p – 1 = 0
    p =1/2
    2x = 2-1
    x = -1

  2. 3x + 33-x – 28 = 10
    3x + 33/3x – 28 = 10
    misal : 3x = p
    p + 27/p – 28 = 0
    p² – 28p + 27 = 0
    (p-1)(p-27) = 0
    p1 = 1 ® 3x = 30
    x1 = 0
    p2 = 27 ® 3x = 33
    x2 = 3

B. af(x) = bf(x) ® f(x) = 0

Bilangan pokok berbeda, pangkat sama. Pangkatnya = 0.

Contoh:

  1. 3x²-x-2 = 7x²-x-2
    x² – x -2 = 0
    (x-2)(x+1) = 0
    x1 = 2 ; x2 = -1

C. af(x) = bf(x) ® f(x) log a = g(x) log b

Bilangan pokok berbeda, pangkat berbeda. Diselesaikan dengan menggunakan logaritma.

Contoh:

  1. 4x-1 = 3x+1
    (x-1)log4 = (x+1)log3
    xlog4 – log4 = x log 3 + log 3
    x log 4 – x log 3 = log 3 + log 4
    x (log4 – log3) = log 12
    x log 4/3 = log 12
    x log 4/3 = log 12
    x = log 12/ log 4/3 = 4/3 log 12

D. f(x) g(x) = f(x) h(x)

® Bilangan pokok (dalam fungsi) sama, pangkat berbeda.Tinjau beberapa kemungkinan.

  1. Pangkat sama g(x) = h(x)
  2. Bilangan pokok f(x) = 1 ket: 1g(x) = 1h(x) = 1
  3. Bilangan pokok f(x) = -1
    Dengan syarat, setelah nilai x didapat dari f(x)=-1 , maka nilai
    pangkatnya yaitu g(x) dan h(x) kedua-duanya harus genap atau kedua-duanya harus ganjil.

    ket :
    g(x) dan h(x) Genap : (-1)g(x) = (-1)h(x) = 1
    g(x) dan h(x) Ganjil : (-1)g(x) = (-1)h(x) = -1

  4. Bilangan pokok f(x) = 0
    Dengan syarat, setelah nilai x didapat dari f(x) = 0, maka nilai pangkatnya yaitu g(x) dan h(x) kedua-duanya harus positif.

    ket : g(x) dan h(x) positif ® 0g(x) = 0h(x) = 0

Contoh:

(x² + 5x + 5)3x-2 = (x² + 5x + 5)2x+3

  • Pangkat sama
    3x – 2 = 2x + 3 ® x1 = 5

  • Bilangan pokok = 1
    x² + 5x + 5 = 1
    x² + 5x + 4 = 0
    ® (x-1)(x-4) = 0 ® x2 = 1 ; x3 = 4

  • Bilangan pokok = -1
    x² – 5x + 5 = -1
    x² – 5x + 6 = 0
    ® (x-2)(x-3) = 0 ® x = 1 ; x = 4

    g(2) = 4 ; h(2) = 7 ; x=2 tak memenuhi karena (-1)4 ¹ (-1)7
    g(3) = 7 ; h(3) = 9 ; x4 = 3 memenuhi karena (-1)7 = (-1)9 = -1

  • Bilangan pokok = 0
    x² – 5x + 5 = 0
    ® x5,6 = (5 ± Ö5)/2

    kedua-duanya memenuhi syarat, karena :
    g(2 1/2 ± 1/2 Ö5) > 0
    h(2 1/2 ± 1/2 Ö5) > 0

    Harga x yang memenuhi persamaan diatas adalah :
    HP : { x | x = 5,1,4,3,2 1/2 ± 1/2 Ö5}

  • Tinggalkan sebuah Komentar »

    RSS feed for comments on this post. TrackBack URI

    Tinggalkan Balasan

    Isikan data di bawah atau klik salah satu ikon untuk log in:

    Logo WordPress.com

    You are commenting using your WordPress.com account. Logout / Ubah )

    Gambar Twitter

    You are commenting using your Twitter account. Logout / Ubah )

    Foto Facebook

    You are commenting using your Facebook account. Logout / Ubah )

    Foto Google+

    You are commenting using your Google+ account. Logout / Ubah )

    Connecting to %s

    Blog di WordPress.com.
    Entries dan komentar feeds.

    %d blogger menyukai ini: